If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2=19w-20
We move all terms to the left:
w^2-(19w-20)=0
We get rid of parentheses
w^2-19w+20=0
a = 1; b = -19; c = +20;
Δ = b2-4ac
Δ = -192-4·1·20
Δ = 281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{281}}{2*1}=\frac{19-\sqrt{281}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{281}}{2*1}=\frac{19+\sqrt{281}}{2} $
| -9x=-22 | | 2x+4=2(4x-3)-8 | | 3/4x+7=22 | | 5(3x+5)=84 | | 8(1+8b)=-504 | | -40x+-48=3x-5 | | 18=6x+x*(x-13) | | 39=7(5m-2)-6(8m+5) | | 1/4(12x-8)+2=30 | | 6-x=5x=30 | | 6m-18=24 | | 6x+1=(x-36) | | (2/5x)+(1/5)=3 | | 10x+18=10x+18 | | 3s^2-2s-5=0 | | x^2-10x-38=0 | | -5v+40=-5(6+8v) | | 3w^2+w-4=0 | | (x+3)/2=(x-3)/6 | | 14x^2-2=36 | | 8x+12=21-3x | | 8x-12=21-3x | | x+3=2x-1=10 | | 5.3=7.7-0.3x | | 1-5p+3=9 | | 11x+7x+2=19x-4 | | -136=-8(-2a+3) | | 12+12b= −12−12 | | 8(r+1)=144 | | x+2=(3x^2)+17x+20 | | x.x+3.17=12.08 | | (1/2)(3/2y+(1/3))=(-1/2)(y-(5/2)) |